On the perfect matching association scheme

Alice Lacaze-Masmonteil University of Regina Joint work with Himanshu Gupta, Allen Herman, Roghayeh Maleki, and Karen Meagher.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Discrete Mathematics Research Group at URegina

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Perfect matching

Definition

A matching in a graph G is a collection of edges of G that do not have a vertex in common.



Figure: The complete graph on 8 vertices, K_8 .

Perfect matching

Definition

A matching in a graph G is a collection of edges of G that do not have a vertex in common.

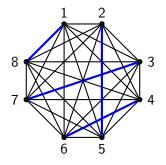


Figure: A matching of K_8 (in blue).

Perfect matching

Definition

A **perfect matching** in a graph G is a matching that covers every vertex of G.

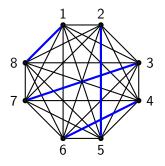


Figure: A perfect matching of K_8 (in blue).

Definition

Let $M(K_{2k})$ denote the set of all perfect matchings of K_{2k} .

Main goal: To construct a set of graphs, each with vertex set $M(K_{2k})$, that satisfy a very specific set of constraints.

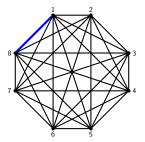


Figure: We select our first edge.

We have:

$$|M(K_{2k})| = \binom{2k}{2} \cdots$$

(日) (四) (日) (日) (日)

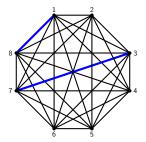


Figure: We select our second edge.

We have:

$$|M(K_{2k})| = \binom{2k}{2}\binom{2k-2}{2}\cdots$$

(日) (四) (日) (日) (日)

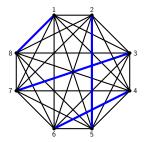


Figure: A perfect matching of K_8 .

We have:

$$|M(K_{2k})| = \binom{2k}{2}\binom{2k-2}{2}\cdots\binom{2}{2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We have counted each matching k! times, which means that: $|M(2k)| = \frac{1}{k!} \binom{2k}{2} \binom{2k-2}{2} \cdots \binom{2}{2}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

We have:

$$|M(K_{2k})| = \frac{1}{k!} {\binom{2k}{2}} {\binom{2k-2}{2}} \cdots {\binom{2}{2}} \\ = \frac{(2k)(2k-1)(2k-2)(2k-3)\cdots 1}{2^k k!}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Recall that $\binom{n}{2} = \frac{n(n-1)}{2}$.

We have:

$$|M(K_{2k})| = \frac{1}{k!} {\binom{2k}{2}} {\binom{2k-2}{2}} \cdots {\binom{2}{2}} \\ = \frac{(2k)(2k-1)(2k-2)(2k-3)\cdots 1}{(2k)(2k-2)(2k-4)\cdots 2}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Recall tha $\binom{n}{2} = \frac{n(n-1)}{2}$.

We have:

$$|M(K_{2k})| = \frac{1}{k!} \binom{2k}{2} \binom{2k-2}{2} \cdots \binom{2}{2}$$
$$= \frac{(2k)(2k-1)(2k-2)(2k-3)\cdots 1}{(2k)(2k-2)(2k-4)\cdots 2}$$
$$= (2k-1)(2k-3)(2k-5)\cdots 1 = (2k-1)!!$$

Recall that $\binom{n}{2} = \frac{n(n-1)}{2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Our graphs will each have (2k - 1)!! vertices.

Next step: to define adjacencies between two vertices.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Relation between two perfect matchings

We define a relation between two perfect matchings in $M(K_{2k})$. **Example:** We overlap two perfect matchings of K_{2k} .

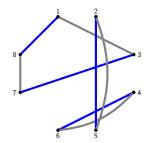


Figure: Two perfect matchings of $M(K_8)$ in grey and blue.

(日) (四) (日) (日) (日)

Relation between two perfect matchings

We define a relation between two perfect matchings in $M(K_{2k})$. **Example:** This gives rise to a set of cycles of **even** lengths.

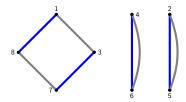


Figure: The union of these two matchings gives us 3 cycles of length 4,2, and 2 respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Relation between two perfect matchings

Notation

Let $\lambda \vdash k$ be a partition of k such that $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_t]$. We write $2\lambda = [2\lambda_1, 2\lambda_2, \dots, 2\lambda_t]$ where $2\lambda \vdash 2k$.

Example: If $\lambda \vdash 4$ and $\lambda = [2, 1, 1]$, then $2\lambda = [4, 2, 2]$, where $2\lambda \vdash 8$.

Building our graphs

Definition

Let *P* and *Q* be two perfect matchings in $M(K_{2k})$ and $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_t]$ is a partition of *k*. We say that *P* and *Q* are λ -related if $P \cup Q = C_{2\lambda_1} \cup C_{2\lambda_2} \cup \dots \cup C_{2\lambda_t}$.

Example:

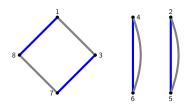


Figure: Our blue and grey perfect matching are [2,1,1]-related.

Constructing a graph

Definition

The graph X_{λ} is a graph whose vertex set is $M(K_{2k})$. Two vertices, P and Q, are adjacent if and only if the corresponding matchings are λ -related.

Key properties:

- X_{λ} has (2k-1)!! vertices;
- X_{λ} is *d*-regular (each vertex is incident to exactly *d* edges);
- X_{λ} is vertex transitive with automorphism group S_{2k} ;
- We have a graph for each partition of 2k into even parts.

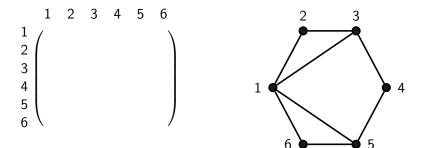
Adjacency matrices of a graph

Definition

Given a graph X with vertex set V(X), the **adjacency matrix of** X is a $V(X) \times V(X)$ matrix with rows and columns indexed by elements of V(X). The coefficients of our matrix are defined as follows:

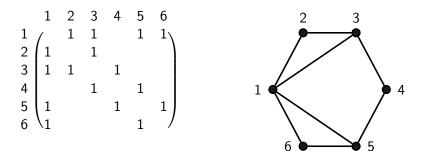
$$X(u,v) = \begin{cases} 1 & \text{if } u \sim v; \\ 0 & \text{if } u \perp v. \end{cases}$$

Example: Rows and columns of the matrix are indexed by the vertices of our graph.



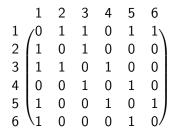
▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

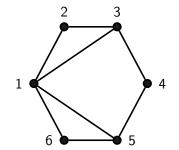
Example: $(v_1, v_2) = 1$ if and only if v_1 and v_2 are adjacent in X.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example: $(v_1, v_2) = 0$ otherwise.





▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Adjacency matrices of a perfect matching graph

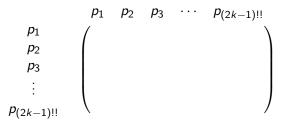
Definition

Let $\lambda \vdash k$. The matrix A_{λ} is a $(2k - 1)!! \times (2k - 1)!!$ matrix with rows and columns indexed by elements of $M(K_{2k})$. The coefficients of our matrix are defined as follows:

$$X(P,Q) = egin{cases} 1 & ext{if } P ext{ and } Q ext{ are } \lambda ext{-related} \ 0 & ext{otherwise} \end{cases}$$

The matrices A_{λ} is a symmetric matrix $(A_{\lambda}^{T} = A_{\lambda})$.

Example: We construct the adjacency matrix of A_{λ} . Rows and columns are indexed by elements of M(2k).



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example: Coefficient (p_i, p_j) is 1 if and only if p_i and p_j are λ -related.

$$\begin{array}{cccccc} & p_1 & p_2 & p_3 & \cdots & p_{(2k-1)!!} \\ p_1 & \begin{pmatrix} 0 & 1 & 0 & & 1 \\ 1 & 0 & 1 & & 0 \\ p_3 & & 1 & 0 & & 0 \\ \vdots & & & & & \\ p_{(2k-1)!!} & & 1 & 0 & 0 & 0 \end{array} \right)$$

This construction gives rise to t matrices, one for each integer partition of k.

Association schemes

Definition

A set $\mathcal{A} = \{A_0, A_1, \dots, A_t\}$ of $v \times v$ binary matrices is an **association scheme** if:

•
$$A_0 = I_v$$
 (the identity matrix);

•
$$\sum_{i=0}^{t} A_i = J$$
 (*J* is the all-one matrix);

•
$$A^T \in \mathcal{A}$$
; $(A^T$ is the transpose)

•
$$A_iA_j = c_oA_0 + c_1A_1 + \ldots + c_tA_t$$
, where $c_i \in \mathbb{C}$;

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Perfect matching association schemes

Definition

The set $A_{2k} = \{A_{[1,1,\dots,1]}, A_{[2,1,1,\dots,1]}, \dots, A_{[k]}\}$ is known as the perfect matching association scheme.

Observation: The set $A_{2k} = \{A_{[1,1,\dots,1]}, A_{[2,1,1,\dots,1]}, \dots, A_{[k]}\}$ is a set of symmetric matrices that pairwise commute.

Fact: A set of symmetric matrices that pairwise commute have the same eigenspaces.

There is an equivalent (and more technical) description of the perfect matching association scheme.

Eigenspaces	$ A_{[1,1,,1]} $	$A_{[2,1,1,,1]}$	$A_{[3,1,1,,1]}$	• • • •	$A_{[k]}$
[2 <i>k</i>]					
[2k-2,2]					
[2k - 4, 4]					
÷					
$[2, 2, 2, 2, \ldots, 2]$					

The eigenspaces of our matrices correspond to irreducible representations of the symmetric group S_{2k} which are S_{2k} -modules.

Question: Given a S_{2k} -module corresponding to 2μ , what is the eigenvalue of A_{λ} corresponding to this eigenspace?

Eigenspaces	$ A_{[1,1,,1]} $	$A_{[2,1,1,,1]}$	$A_{[3,1,1,,1]}$		$ A_{[k]} $
[2 <i>k</i>]	?	?	?		?
[2k-2,2]	?	?	?		?
[2k - 4, 4]	?	?	?		?
÷	?	?	?		?
$[2, 2, 2, 2, \dots, 2]$?	?	?		?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Question: Given a S_{2k} -module corresponding to 2μ , what is the eigenvalue of A_{λ} corresponding to this eigenspace?

Eigenspaces	$ A_{[1,1,,1]} $	$A_{[2,1,1,,1]}$	$A_{[3,1,1,,1]}$		$ A_{[k]} $
[2 <i>k</i>]	1	?	?		?
[2k-2,2]	1	?	?		?
[2k - 4, 4]	1	?	?		?
÷	1	?	?		?
$[2, 2, 2, 2, \dots, 2]$	1	?	?		?

Question: Given a S_{2k} -module corresponding to 2μ , what is the eigenvalue of A_{λ} corresponding to this eigenspace?

Eigenspaces	$A_{[1,1,,1]}$	$A_{[2,1,1,,1]}$	$A_{[3,1,1,,1]}$		$A_{[k]}$
[2 <i>k</i>]	1	\checkmark	\checkmark	\checkmark	\checkmark
[2k-2,2]	1	?	?		?
[2k - 4, 4]	1	?	?		?
:	1	?	?		?
$[2, 2, 2, 2, \dots, 2]$	1	?	?		?

The eigenvalues of the [2k]-eigenspace corresponds to the degree of each graph (each graph is regular).

Question: Given a S_{2k} -module corresponding to 2μ , what is the eigenvalue of A_{λ} corresponding to this eigenspace?

Eigenspaces	$A_{[1,1,,1]}$	$A_{[2,1,1,,1]}$	$A_{[3,1,1,,1]}$		$A_{[k]}$
[2 <i>k</i>]	1	\checkmark	\checkmark	\checkmark	\checkmark
[2k-2,2]	1	\checkmark	\checkmark	\checkmark	\checkmark
[2k - 4, 4]	1	?	?		?
÷	1	?	?		?
$[2, 2, 2, 2, \dots, 2]$	1	?	?		?

MacDonal (1979) gives formulas for the eigenvalues corresponding to the [2k - 2, 2]-eigenspace.

Question: Given a S_{2k} -module corresponding to 2μ , what is the eigenvalue of A_{λ} corresponding to this eigenspace?

Eigenspaces	$A_{[1,1,,1]}$	$A_{[2,1,1,,1]}$	$A_{[3,1,1,,1]}$		$A_{[k]}$
[2 <i>k</i>]	1	\checkmark	\checkmark	\checkmark	\checkmark
[2k-2,2]	1	\checkmark	\checkmark	\checkmark	\checkmark
[2k - 4, 4]	1	\checkmark	?		?
÷	1	\checkmark	?		?
$[2, 2, 2, 2, \dots, 2]$	1	\checkmark	?		?

Diaconis and Holmes (2002) determine all eigenvalues of $A_{[4,2,2,...,2]}$.

Question: Given a S_{2k} -module corresponding to 2μ , what is the eigenvalue of A_{λ} corresponding to this eigenspace?

Eigenspaces	$ A_{[1,1,,1]} $	$A_{[2,1,1,,1]}$	$A_{[3,1,1,,1]}$		$ A_{[k]} $
[2 <i>k</i>]	1	\checkmark	\checkmark	\checkmark	\checkmark
[2k-2,2]	1	\checkmark	\checkmark	\checkmark	\checkmark
[2k-4, 2, 2]	1	\checkmark	?		\checkmark
÷	1	\checkmark	?		\checkmark
$[2, 2, 2, 2, \dots, 2]$	1	\checkmark	?		\checkmark

MacDonald (1979) provides a formula for computing eigenvalues of $A_{[2k]}$.

Matrix of Eigenvalues

Eigenspaces	$A_{[1,1,1,1]}$	$A_{[2,1,1]}$	$A_{[2,2]}$	A _[3,1]	A _[4]
[8]	1	12	12	32	48
[6,2]	1	5	-2	4	-8
[4, 4]	1	2	7	-8	-2
[4, 2, 2]	1	-1	-2	-2	4
[2, 2, 2, 2]	1	-6	3	8	-6

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

For small k, we are able to compute all eigenvalues.

Further background

- The eigenvalues of the perfect matching association schemes are always integers.
- Godsil and Meagher have derived a formula for computing the eigenvalues using the eigenvectors.
- Srinivasan (2020) developed an inductive algorithm that derives explicit formulas for the eigenvalues of each column.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It is well-known that the largest eigenvalue occurs on the [2k]-eigenspace for each A_{λ} and that this eigenvalue corresponds to the degree of each graph.

Conjecture (Meagher)

If λ contains at least one part of length 1, then the second highest eigenvalue of A_{λ} occurs on the [2k - 2, 2]-eigenspace.

Conjecture

Eigenspaces	$A_{[1,1,,1]}$	$A_{[2,1,1,,1]}$	$A_{[3,1,1,,1]}$	•••	$A_{[k]}$
[2 <i>k</i>]	1	\checkmark	\checkmark	\checkmark	\checkmark
[2k-2,2]	1				\checkmark
[2k-4, 2, 2]	1	\checkmark	?		\checkmark
:	1	\checkmark	?		\checkmark
$[2, 2, 2, 2, \dots, 2]$	1	\checkmark	?		\checkmark

(ロ)、(型)、(E)、(E)、 E) の(()

Theorem (GHLMM (2025+))

The second largest eigenvalue of $A_{[k-1,1]}$ and $A_{[k-2,1,1]}$ occurs on the occurs on the [2k-2,2]-eigenspace.

Facts:

- The trace of a matrix is the sum of its eigenvalues.
- If A is the adjacency matrix of a graph X, the trace of A² is twice the number of edges of X.

Proof: The degree of A_{λ} is $\zeta_{[2k]}$, the eigenvalue of the [2k]-eigenspace. We see that the trace of A_{λ}^2 is:

$$trace(A_{\lambda}^2) = \sum_{\mu \vdash k} m_{2\mu}\zeta_{2\mu}^2$$

 $trace(A_{\lambda}^2) = (2k-1)!!\zeta_{\lceil 2k}$

where the $\zeta_{2\mu}$ are the eigenvalues of A_{λ} occurring with multiplicity $m_{2\mu}$ on the 2μ -eigenspace. This means that

$$\sum_{\mu \vdash k} m_{2\mu} \zeta_{2\mu}^2 = (2k - 1)!! \zeta_{[2k]}.$$

Proof: We know the eigenvalues of the μ -eigenspace for $\mu \in \{[2k], [2k-2, 2]\}$. Thus,

 $\sum_{\mu \notin \{[2k], [2k-2,2]\}} m_{2\mu} \zeta_{2\mu}^2 = (2k-1)!! \zeta_{[2k]} - \zeta_{[2k]}^2 - m_{[2k-2,2]} \zeta_{[2k-2,2]}^2$ where the $\zeta_{2\mu}$ are the eigenvalues of A_{λ} occurring with multiplicity $m_{2\mu}$.

Proof: Since every element in the sum on left-hand side is a positive integer, we have

$$\zeta_{2\mu}^2 \leqslant (2k-1)!!\zeta_{[2k]} - m_{[2k-2,2]}\zeta_{[2k-2,2]}^2 - \zeta_{[2k]}$$

where the $\zeta_{2\mu}$ correspond to 2μ -eigenspaces such that $2\mu \notin \{[2k], [2k-2, 2]\}.$

Proof: We then have an upper-bound for

$$\zeta_{\mu}^2 \leqslant (2k-1)!! - \zeta_{[2k]}^2 - m_{[2k-2,2]}\zeta_{[2k-2,2]}^2 - \zeta_{[2k]}$$

where the $\zeta_{2\mu}$ correspond to 2μ -eigenspaces such that $2\mu \notin \{[2k], [2k-2, 2]\}.$

Proof: We know how to compute the eigenvalues for the [2k - 2, 2]-eigenspace and the [2k]-eigenspace. This means that we can bound the ζ_{μ}^2 by some function f of $\zeta_{[2k]}$ and $\zeta_{[2k-2,2]}$):

$$\zeta_{\mu}^2 \leqslant f(\zeta_{[2k]}, \zeta_{[2k-2,2]})$$

The crux is to show that $f(\zeta_{[2k]}, \zeta_{[2k-2,2]}) \leq \zeta_{[2k-2,2]}^2$ which then implies that

$$\zeta_{\mu}^2 \leqslant \zeta_{[2k-2,2]}^2.$$

We show that $f(\zeta_{[2k]}, \zeta_{[2k,2]}) \leq \zeta_{[2k-2,2]}^2$ for matrices $A_{[k-1,1]}$ and $A_{[k-2,1,1]}$.

Proof: Because $\zeta_{[2k-2,2]} \ge 0$, we then see that

$$\zeta_{\mu} \leqslant \zeta_{[2k-2,2]}$$

for all $\mu \notin \{[2k], [2k-2, 2]\}$ and the claim follows.

Results

Using formulas obtained from Srinivasan, we are also able to affirm Meagher's conjecture for three other matrices in the scheme.

Theorem (GHLMM (2025+))

The second largest eigenvalue of $A_{[4,2,2,...2]}$, $A_{[4,4,2...,2]}$, $A_{[6,2...,2]}$ occurs on the [2k - 2, 2]-eigenspace.

- What are the diameters of the graphs in $\mathcal{A}(M_{2k})$?
- What is the chromatic number of the graphs in $\mathcal{A}(M_{2k})$?
- Can our methods be further extended to affirm our conjecture on the second highest eigenvalue?